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Abstract We present a simulation framework, called
NETMORPH, for the developmental generation of 3D
large-scale neuronal networks with realistic neuron mor-
phologies. In NETMORPH, neuronal morphogenesis is
simulated from the perspective of the individual growth
cone. For each growth cone in a growing axonal or
dendritic tree, its actions of elongation, branching and
turning are described in a stochastic, phenomenological
manner. In this way, neurons with realistic axonal and
dendritic morphologies, including neurite curvature, can be
generated. Synapses are formed as neurons grow out and
axonal and dendritic branches come in close proximity of
each other. NETMORPH is a flexible tool that can be
applied to a wide variety of research questions regarding
morphology and connectivity. Research applications include
studying the complex relationship between neuronal mor-
phology and global patterns of synaptic connectivity.
Possible future developments of NETMORPH are discussed.

Keywords Neurite outgrowth . Growth model . Growth
cone .Morphogenesis . Synaptic connectivity . Neural
networks . Neural development

Introduction

Activity dynamics in neuronal networks depends to a large
extent on the pattern of synaptic connections between
neurons (Douglas and Martin 2004). Because the formation
of synapses requires overlap between axons and dendrites,
neuronal morphology is an important determinant of
network connectivity. Neurons develop their characteristic
morphology of branched axons and dendrites by way of the
dynamic behavior of growth cones—specialized structures
at the ends of outgrowing neurites that mediate neurite
elongation and branching (Letourneau et al. 1991). Synap-
ses can occur where axonal and dendritic branches of
different neurons come sufficiently close to each other
(Braitenberg and Schütz 1998; Peters 1979). The resulting
local and global patterns of synaptic connectivity (e.g.,
connection length distribution; “small-world” properties;
Sporns et al. 2004) that emerge during development will
depend on the specific characteristics of axonal and
dendritic arbors, such as their length, number of segments,
branching structure and coverage of space. In general,
however, it is not well understood how these details of
neuronal morphology and the local processes of neurite
outgrowth and synapse formation influence global connec-
tivity. To be able to investigate such issues as the formation
of synaptic connectivity during development and the
relationship between neuronal morphology and synaptic
connectivity, we need a simulation framework that can
generate large scale networks with realistic neuronal
morphologies by using outgrowth rules for axons and
dendrites.

In this paper, we present a simulation framework, called
NETMORPH, for the stochastic and developmental gener-
ation of 3D large scale neuronal networks with realistic
neuronal morphologies. In our framework, neuronal mor-
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phogenesis is simulated from the perspective of the
individual growth cone. The various actions of the growth
cone, such as elongation, branching and turning, are
described as outcomes of stochastic processes that capture
in a phenomenological manner the processes involved in
neurite outgrowth. This description includes the influence
on outgrowth of the growth cone’s position in the growing
tree and of competition for resources between different
growth cones of a dendrite or an axon. The model for 3D
neuronal morphogenesis is based on the dendritic growth
model of Van Pelt et al., (Van Pelt et al. 2001a; Van Pelt and
Uylings 2002, 2003, 2005) and extended with rules for the
direction of neurite outgrowth and branching angles.
Synapses are formed as neurons grow out, and are
determined on the basis of proximity between axonal and
dendritic branches.

The many applications of our framework include
creating detailed network connectivity patterns, with axo-
dendritic synapses at specific locations in the neuronal
morphology; studying how typical connectivity patterns
come about during development (e.g., small-world connec-
tivity; Sporns et al. 2004); examining how characteristic
changes in synaptic connectivity, as observed in brain
diseases such as Alzheimer’s disease and autism, may arise
from alterations in neuronal morphology (Belmonte and
Bourgeron 2006; Scheff et al. 2007); and investigating the
complex relationship between neuronal morphology and
local and global patterns of synaptic connectivity. The
neuronal morphologies and synaptic connectivities as
produced by NETMORPH could also be made available
to tools such as NEURON to simulate activity dynamics.

Other simulators for generating neuronal network struc-
tures exist, but they differ with respect to the temporal
aspects of neuronal development, the morphology of single
neurons, or the connectivity in the generated networks. The
modeling tool neuroConstruct (Gleeson et al. 2007) for
creating neuronal networks in 3D space requires neuronal
morphologies to be imported or specified, but it cannot
grow the morphologies using developmental rules for
neurite elongation and branching. The simulator L-Neuron
is designed to create virtual neurons that are anatomically
indistinguishable from their real counterparts using an L-
systems approach by means of iteratively sampling exper-
imental distributions of neuronal shape parameters (Senft
and Ascoli 1999; Ascoli and Krichmar 2000; Ascoli et al.
2001a, b; Samsonovich and Ascoli 2007). Similarly, the
simulator tool NeuGen (Eberhard et al. 2006) generates
neuronal networks in 3D with morphologically realistic
neurons by sampling experimental distributions of morpho-
logical shape parameters. Recently, Luczak (2006) showed
how basic environmental factors and simple rules of
diffusive growth already adequately account for the spatial
embedding of tree structures of cortical dendrites. A new

computer package that is currently under development is
CX3D for the simulation of cortical development in 3D
space, including the morphology of single neurons (Zubler
and Douglas 2008).

Only few models exist that describe the development of
network connectivity. Van Ooyen et al. used models in
which the morphology of a single neuron was represented
in a highly abstract manner (Van Ooyen and Van Pelt 1994,
1996; Van Ooyen et al. 1995, 1996). In their approach,
growing neurons were modeled as expanding, circular
neuritic fields, without a distinction between axons and
dendrites. A similar and still very abstract approach, but
using separate axonal and dendritic processes, is taken by
Butz et al. (2006). Segev and Ben-Jacob (2000) provide a
model for the self-wiring of neuronal networks based on
chemotaxis. Their model contains migrating growth cones
without detailed neuronal morphology.

The structure of the article is as follows. Section 2
describes general aspects of the modeling approach.
Section 3 covers the structure of, and the assumptions
underlying, the model for neurite outgrowth and branching.
Section 4 concentrates on parameter optimization, the use
of the simulator, and model validation through comparisons
with experimental data. Section 5 describes the model for
locating candidate synapses and the emerging connectivity
in the network. Section 6 deals with some implementation
issues and the use of the simulator NETMORPH. The paper
ends with a Discussion, in which we outline some future
extensions of NETMORPH.

Modeling Considerations

Choice of Model

Growth cones exhibit complex behavior, as outcomes of a
multitude of intracellular processes and chemical and struc-
tural interactions with their local environments (Bamburg
2003; Goldberg and Burmeister 1989). These intra- and
extracellular mechanisms can cause a growth cone: (a) to
start or to stop extending, or even to retract, (b) to bifurcate
(branch), and (c) to change direction (turn) (Isbister and
O’Connor 1999; Polinsky et al. 2000). In describing growth
cone behavior one needs to make choices for the level of
granularity, which can range from the phenomenological level
of minimal assumptions up to highly detailed descriptions of
biophysical processes underlying the dynamic behavior of
growth cones and outgrowing neurites (e.g., Goodhill 1998;
Hentschel and Van Ooyen 1999; Aeschlimann 2000; Graham
and Van Ooyen 2004; Hely et al. 2001; Maskery et al. 2004;
Kiddie et al. 2005). In NETMORPH, the neurite outgrowth
and branching models are based on existing phenomenolog-
ical dendritic growth models as formulated by Van Pelt and
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co-workers (e.g., Van Pelt and Uylings 2003; Van Ooyen and
Van Pelt 1994). These models take a stochastic approach
based on simple rules (functions) for neurite branching and
elongation. They have been validated for a variety of
neuronal cell types and have been demonstrated to accurately
describe the dendritic metrical and topological variability
within and between cell types (e.g., Van Pelt et al. 2001a, b).
In NETMORPH we extended and modified these models in
order to simulate (i) growth in 2D or 3D, (ii) growth of
axons and dendrites, and (iii) neurite curvature (tortuosity).

Discretization of Time

A discretization of time is used in NETMORPH, whereby
during each time interval Δt, a growth cone may (i)
migrate, so that the trailing neurite is elongated; (ii)
bifurcate, resulting in two daughter growth cones (and
branches); and (iii) change direction, so that a turn appears
in the neurite. The processes involved in neurite outgrowth
may all have characteristic but different time scales.
Adapting the size of the time steps to a slow process may
implicate inappropriate treatment of fast mechanisms.
Alternatively, adapting the time steps to fast processes
may imply inaccurate simulation of slow processes due to
oversampling. In its present implementation, NETMORPH
uses fixed time steps with probabilistic functions for
elongation and branching. The growth model of Van Pelt
et al. was developed with the condition that branching
probabilities per time step are small (<<1), in order to
neglect the possible occurrence of more than one branching
event at a growth cone per time step. This condition places
an upper limit on the size of the time step. Elongation is
treated with a more coarse-grained time division. To
include variability on this coarser time scale, we randomly
assign an elongation rate to a newly formed growth cone
(i.e., at a branching event) for the period up to the next
branching event of the growth cone.

Space

There is no discretization of space in NETMORPH.
Separate simulation programs, NETMORPH and NET-
MORPH2D, are provided for three dimensional and
exclusively two dimensional simulations, respectively.
Space can be bounded explicitly to force the outgrowing
neurites to stay within these bounded regions.

Modeling Neuronal Morphogenesis

The Van Pelt growth model describes neuronal outgrowth
as a stochastic process in time in which neurites can
elongate and bifurcate. The model defines the probabilities

per time step of these actions as functions of time. The
model is designed to be as simple as possible and, although
phenomenological in nature, is inspired by actual biological
processes underlying neurite outgrowth. Basic assumptions
include that (i) all the tips (i.e., growth cones) of a neuronal
tree are assumed to participate in the branching and
elongation process, (ii) neurite elongation reflects the final
outcome of a process of outgrowth and retraction, and (iii)
branching and elongation are modeled as independent
processes. This last assumption implies that the validation
of the model can proceed in separate phases, with first
validating the branching process and then the elongation
process. Note that length characteristics of a tree depend on
the properties of both the branching and the elongation
process.

Branching Probability

The probability per unit of time of a branching event at a
given terminal segment j (i.e., growth cone) is given by (e.g.
Van Pelt and Uylings 2002, 2003, 2005, 2007)

pj tjnðtÞ; gð Þ ¼ DðtÞnðtÞ�E2�Sgj
�
CðtÞ ð1Þ

with

CðtÞ ¼ 1

nðtÞ
X

nðtÞ
k¼12

�Sgk :

The time-dependent branching probability pj of a given
terminal segment j is composed of three terms: a baseline
branching rate function D(t); a term nðtÞ�E making the
branching probability dependent on the momentary total
number of terminal segments, n(t), in the tree, with a free
‘competition’ parameter E; and a term 2�Sgj

�
CðtÞ making

the branching probability dependent on the centrifugal
order γj of the terminal segment (i.e. its position in the tree;
see Fig. 1a). The terms 2�Sgk are weight factors modulated
by the free parameter S, and assigned to all terminal
segments, normalized by the mean weight C(t). The
function D(t) is an ‘a priori’ unknown function representing
all factors involved in branching not covered by the 2nd
and 3rd term in (1). The 3rd term modulates the branching
probabilities according to the position of the terminal
segments in the tree. For S=0, all terminal segments have
equal branching probabilities. For S>0, proximal terminal
segments (relative to the root) bifurcate with higher
probabilities than distal ones, while for S<0, distal terminal
segments bifurcate with higher probabilities than proximal
ones. Parameter S uniquely determines the topological
asymmetry of the generated trees (Van Pelt et al. 1992).
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The baseline branching rate function D(t) is approximat-
ed by an exponential function

DðtÞ ¼ ce�t=t ð2Þ
with time constant τ. Such a function was necessary to
match the shape of the experimental growth curve of the
increasing number of dendritic terminal segments during
outgrowth of rat cortical multipolar nonpyramidal cells (Van
Pelt and Uylings 2003). An important parameter is the time
integral B(t) of the function D(t) over the period of growth

BðtÞ ¼ R t

0 DðsÞds ¼
R t

0 ce
�s=tds ð3Þ

denoting the expected number of branching events at an
isolated segment (or for E=0) in the period of growth. By
using the asymptotic value for B(t) we obtain:

B1 ¼ B 1ð Þ ¼ ct
BðtÞ ¼ B1 1� e�t=t

� � ð4Þ

As discussed above, neurite outgrowth is implemented in
NETMORPH on a discrete time scale, with fixed time steps
of duration Δt. The probability of branching of a terminal
segment j in time step ti; ti þΔtð Þ then becomes

pi;j ¼ Din
�E
i 2�Sgj=Cni ð5Þ

with ni the number of terminal segments in time step i and
Di defined as

Di

Z ti

ti�Δt
DðtÞdt ¼ B tið Þ � B ti �Δtð Þ ¼ B1e�ti=t eΔt=t � 1

� �

ð6Þ
resulting in the expression

pi;j ¼ n�E
i B1e�ti=t eΔt=t � 1

� �
2�Sgj

�
Cni ð7Þ

again with

Cni ¼
1

ni

Xni

k¼1
2�Sgk

The branching process of a tree is thus fully defined by the
parameters B∞, E, S, τ, and the period of growth T. Examples
of optimized values for these parameters for a variety of cell
types are summarized in Van Pelt et al. (2001b).

Elongation

The rate of elongation of a growth cone may vary
considerably (e.g., Lamoureux et al. 1998; da Costa et al.
2002), also on the time scale of the chosen time steps Δt. In
NETMORPH a more coarse grained approach is used by
taking an averaged elongation rate for the period in which a
terminal segment is elongating up to the occurrence of its
next branching event. The daughter segments emerging
from a branching event are then subsequently given an
elongation rate up to their next branching events. NET-
MORPH assigns the elongation rates by randomly sampling
a Gaussian distribution.

Alternatively, NETMORPH includes the option to select
an elongation competition model. In addition to influencing
branching probability, competition between growth cones
for limited resources may also affect elongation rate (see
also Van Ooyen et al. 2001), which can be described as

vðtÞ ¼ v0nðtÞ�F ð7aÞ
with parameter F determining the strength of competition
(Van Pelt and Uylings 2003). For F=0, terminal segments
elongate with rate v0 independent of the number of terminal
segments. For F>0, elongation rates depend on the
momentary number of terminal segments. For F=1,
elongation rates are inversely correlated with the number
of terminal segments, implying that the total tree increases
its length with rate v0.

Initial Length

Following a branching event, the daughter segments
proceed in their outgrowth by elongation and possibly a
further branching event. When a branching event occurs
shortly after the previous one, a very short intermediate
segment is produced. A random branching process results
in an exponentially decreasing intermediate segment length
distribution (Van Veen and Van Pelt 1993). Experimental
data of intermediate segment lengths, however, show
distributions with clear modal shapes (e.g., Nowakowski
et al. 1992; Uylings et al. 1978, 1994). Apparently, short
intermediate segments in dendritic reconstructions do occur
much less frequently than expected. A possible explanation

Fig. 1 (a) Elements of a topological tree; the segments are labeled
according to their centrifugal order γ. (b) Segment labeling according
to degree (number of terminal segments of the subtree emerging from
a segment)
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is that the branching process of a real growth cone proceeds
over a certain period of time, while it is treated in the model
as a point process in time. To account for this observation, it
is assumed in the model that the daughter branches already
appear with a certain initial length (see also Van Pelt and
Uylings 2007). This additional assumption resulted in
accurate reproductions of the observed intermediate segment
length distributions (Van Pelt et al. 2001a, b, 2003).

Direction of Outgrowth

The direction of outgrowth of a growth cone depends on
many intracellular and extracellular cues, which may cause
large fluctuations in outgrowth directions. The neurite
segments from reconstructed neurons indeed show many
deviations from a straight line at a range of spatial scales.
NETMORPH includes the simulation of these morpholog-
ical details, not only because they are highly characteristic
of the visual appearance of a neuron, but also because they
define how space is invaded by the axonal and dendritic
arborizations. These morphological details influence the
probability that axons and dendrites come into close
proximity of each other, which is a prerequisite for the
formation of synaptic connections (see Section 5).

In NETMORPH it is assumed that fluctuations in the
direction of outgrowth of an individual neurite may occur at
a time scale of the individual time steps Δt. It is further
assumed that the new outgrowth direction depends on
previous outgrowth directions and on a random component
(see also Maskery et al. 2004).

Implementation The probability that growth cones change
their direction of outgrowth during the interval ti; ti þΔtð Þ
is determined independently of the branching probability.
At each growth cone j, the probability of a change in
direction in time interval ti; ti þΔtð Þ is given by

Pd tið Þ ¼ rLΔLj tið Þ ð8Þ
where the rate parameter rL (turns/µm) relates the elonga-
tion ΔLj (t) of a terminal segment with the probability Pd(t)
that a change in direction occurred during the update
interval. For each growth cone, NETMORPH decides that a
direction change has occurred if X<Pd(t), where X 2 0; 1½ �
has a uniform distribution. As long as no change occurs the
piece of neurite keeps elongating in the same direction.
When a change occurs the new direction is calculated and
the propagation subsequently takes place in that direction.
With this approach a neuritic segment consists of a series of
straight segment pieces.

History-Weighted Direction of Outgrowth For the calcula-
tion of a new direction of outgrowth the orientations of

previous segment pieces are taken into account based on
the assumption that the stiffness of neuritic segments,
which creates a force, restricts the new orientations of
neurite outgrowth. Stiffness of neuritic segments increases
when microtubule associated proteins (e.g., MAP2) bind to
the microtubule cytoskeleton, which also gives rise to
longer microtubule polymers (e.g., Sanchez et al. 2000;
Kowalski and Williams 1993). The new direction is
obtained by assigning weight factors to the previous
orientations and taking the vector sum of these weighted
orientations. This sum vector is finally perturbed by a
random deviation, resulting in a new direction of outgrowth
(Fig. 2):

d ¼
X

k
Wkuk þ ra ð9Þ

The summation takes into account past segment pieces
from the last bifurcation point onward, whose orientations
are given by the unit vectors uk. The weight factor Wk of a
segment piece k is taken as Wk ¼ Mk

�
Dp

k , with Mk the
volume of the segment (or length if no segment diameter is
specified), and Dk the distance from the segment’s center
along the neurite path to the elongating tip. The free
parameter p is an exponent determining the dependence on
history. For p=0 there is no distance dependence, for p>0
the most recent segment pieces have more weight than
‘older’ segment pieces, while for p<0 the older segment
pieces dominate over recent ones. The perturbation rα is a
rotation over an angle α randomly drawn from a uniform
distribution over the interval [αmin, αmax], with αmin and
αmax freely selectable parameters.

Branching Angles

An important observation with respect to branching angles
and direction of outgrowth after a bifurcation was made by
Uylings and Smit (1975), who found that in reconstructed
pyramidal cell dendritic trees, parent and daughter segments
at a bifurcation lie predominantly in one plane. Assuming

Fig. 2 Illustration in 2D of the calculation of the new outgrowth
direction d with the segment history tension model. A history of 4
trailing segment pieces introduces 4 weighted direction vectors fk,
whose vector summation results in vector E[d], via E d½ � ¼P

k f k ¼
P

k Mk

�
Dp

k

� �
uk . Random perturbation in 2D over an angle

α results in the actual outgrowth direction d
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that this phenomenon is the result of forces exerted by the
growth cones on the trailing neurites (e.g., Letourneau et al.
1991; Gordon-Weeks 2000; Kater and Guthrie 1990; see
also Aeschlimann 2000) that stretch the parent and daughter
segments into one plane, NETMORPH uses a balance of
forces model to calculate the directions of outgrowth after a
branching event.

Implementation At a branching event, forces are assigned
to the daughter segments proportional to their initial
lengths, and a branch angle β between the daughter
segments is randomly drawn from a given PDF. A
parallelogram is subsequently constructed resulting in a
sum vector d (Fig. 3a), and its plane rotated such that the
sum vector aligns with the orientation of the parent segment
(Fig. 3b). Finally, the orientation of the plane of branching
(in 3D) is rotated around the parent segment axis over an
angle < that is randomly drawn from a uniform distribution
[0, 2π].

Segment Diameters

A major determinant of the diameter of a dendritic segment
is its microtubule cytoskeleton, which scales with the size
of the dendritic tree emerging from the segment (Hillman
1979, 1988). Such scaling behavior becomes apparent at
branch points where a parent segment with diameter dp
bifurcates into two daughter segments with smaller diam-
eters d1 and d2. A power-law relation

dep ¼ de1 þ de2 ð11Þ

(Rall 1959) is assumed between these diameters.
Empirical values for the exponent e have been obtained
for a variety of cell types (see overview in Van Pelt and
Uylings (2005)). Because of the scaling behavior, a
segment becomes thicker when the subtree it supports
increases its number of terminal segments by ongoing
branching. NETMORPH defines segment diameters at the

end of the outgrowth process according to an iterative
process described in Van Pelt and Uylings (2005). Briefly,
terminal segment diameters are estimated by randomly
sampling the observed terminal segment diameter distribu-
tion (or alternatively, a normal distribution with the
observed mean-sd values). At each bifurcation, the diameter
of the parent segment is estimated from its daughter
segment diameters, by using a branch power value that is
obtained from randomly sampling the observed branch
power distribution.

Validation and Use of the Model

Validation of the Model

The dendritic branching model has already been validated
on a range of different cell types (Dityatev et al. 1995; Van
Pelt et al. 1997), and a summary of optimized parameter
values is given in Van Pelt et al. (2001b). The cell types
analyzed include (i) basal dendrites of Wistar-rat cortical
layer 5 large pyramidal neurons (Van Pelt and Uylings
2005), (ii) basal dendrites of Wistar-rat cortical layer 5
small pyramidal neurons (Van Pelt and Uylings 1999), (iii)
basal dendrites of S1-rat cortical layer 2/3 pyramidal
neurons (Van Pelt et al. 2001a), (iv) guinea pig cerebellar
Purkinje cell dendritic trees (Van Pelt et al. 2001a), and (v)
cat deep layer superior colliculus neurons (Van Pelt et al.
2001c). Diameter parameters for cell types (i) and (ii) were
obtained from Larkman (1991) and Larkman et al. (1992),
for cell type (iii) from Hillman (1988) and Larkman (1991),
for cell type (iv) from Hillman (1988), and for cell type (v)
from Schierwagen and Grantyn (1986). Figure 4 shows an
example of how model neurons and experimentally
reconstructed neurons match in the morphology of their
dendrites, with respect to distributions of a number of shape
properties.

The Sholl method was used to validate the 3D embedding
of the neuronal branching patterns (Fig. 5). The ‘experi-
mental’ Sholl curve was calculated for the basal dendrites
of reconstructed day 13 rat cortical layer 2/3 pyramidal
neurons taken from the Markram data set at Neuromorpho.
org. The ‘model’ Sholl curve was calculated for a set of
NETMORPH generated dendrites based on a parameter set
optimized for the 3D data set of day 18 rat cortical layer 2/3
pyramidal neurons (Uylings et al. 1994). With this
parameter set, model neurons were grown up to day 13.

Parameter Optimization

Finding a best fit of NETMORPH generated neuronal
morphologies with an experimental data set requires a
search strategy in a multi-dimensional parameter space

Fig. 3 (a) ‘Forces’ X1 and X2, and randomly selected branch angle β,
drawn in a parallelogram construction to obtain the orientation of the
sum vector d. (b) Rotation of the parallelogram such that the sum
vector aligns with the orientation of the parent segment. The plane of
branching is subsequently rotated (in 3D) around the axis of the parent
segment by a uniformly random selected angle ψ in order to obtain
the final orientations of the daughter segments

200 Neuroinform (2009) 7:195–210



(Table 1) and an iterative comparison of experimental and
model shape properties. These properties can involve
population means and standard deviations, but also the
specific shapes of the distributions, as illustrated in Figs. 4
and 5. In the search strategy one can make use of the fact
that some parameters in the model are directly related to
shape properties of the branching patterns. For instance,
parameter S predicts directly the mean asymmetry of the

trees (Fig. 6). Thus an estimate of parameter S can be
obtained from the mean tree asymmetry in the experimental
data set. Parameters B and E are directly related to the
shape of the terminal segment number distribution, as
shown in Fig 7, in which the B-E parameter plane is
mapped onto the plane of mean and standard deviation of
the degree distribution. Thus an estimate of B and E can be
obtained by plotting the mean and standard deviation of the
experimental degree distribution in the parameter plane and
deriving the coordinates of this point in the mapped B-E
coordinate grid. The branching process governed by the
parameters S, B, E, and τ fully determines the topological
structure of the generated trees, as quantified by tree
asymmetry, number of segments, and the distribution of
segments versus centrifugal order, as well as their changes
over developmental time. The metrical properties of the
generated trees (e.g. segment length, path length), however,
are determined by both the branching and the elongation
process. For the optimization strategy it is therefore
important to first optimize the branching parameters before
optimizing the elongation parameters.

In our growth model, newly formed daughter segments
after a branching event are given an initial length. This
assumption was needed to give the intermediate segment
length distribution a modal shape, as shown in Fig. 4. Thus
an estimate of the initial length parameters lin-mn, lin-sd can
be obtained from the position of the peak in the
experimental intermediate segment length distribution.
The optimization of the elongation parameters (initial

Fig. 5 3D-Sholl analysis of the basal dendritic trees of 25
reconstructed rat cortical layer 2/3 pyramidal neurons from the
NeuroMorpho.org site (Markram), and of NETMORPH simulated
neurons. The curves are normalized to have one intersection at short
radii (i.e. one root segment)

Fig. 4 Comparison of distributions of experimentally observed and
model generated shape properties of day 18 S1-rat cortical layer 2/3
pyramidal cell basal dendrites. The model distributions were obtained
for optimized model parameters taken from Van Pelt et al. (2001a).
The experimental distributions were obtained from 3D reconstructions

as described in Uylings et al. (1994). The different panels show the
distributions of the number of terminal segments per dendritic tree
(degree), centrifugal order of segments, total dendritic length (only
predicted), length of intermediate, terminal segments and path length
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length and elongation rates) involves for each parameter set
a comparison of the experimental and model segment and
path length distributions. The parameter search may be
done manually, but can also be automated using a genetic
algorithm to search for combinations of parameter values
with optimal fits.

Use of NETMORPH Simulator

A simulation run of NETMORPH is based on a script, a
text file that contains parameter identifiers with associated
values specifying the duration, the time step, and other
parameters required for the growth process. These include
the model specifications and the various probability density
functions from which random samples are to be drawn. The
structure of the scripts, and the parameters that can be used
to specify the growth process, are explained in the manual
of NETMORPH (Koene et al. 2009).

Space and Position of Cell Bodies A number of spatial
areas can be selected that constrain the placement of the cell
bodies (Koene et al., 2009). The default area in 3D is a

disc-shaped region (resembling a slice section of cortex),
and the default area in 2D is a circle (resembling the
environment of cultured neurons). In both cases, the default
placement of somata is done randomly with a parameter for
the minimum distance between adjacent soma centers.

Specification of Cell Types For each spatial area different
morphological cell types can be selected. Each cell type
model sets its own initial conditions and develops the
morphological characteristics of that cell type. Soma
diameters are drawn from a given normal distribution.
The orientation of axon outgrowth at neuron placement
may be specified, but is random by default. The initial
lengths of axons and dendrites are zero by default. Cell type
populations are specified either by their total number or by
proportion, which by default are 80% pyramidal neurons
and 20% interneurons (Koene et al. 2009). Morphological
types are randomly distributed during cell placement.

Fig. 7 Mapping of the (B(T), E) space onto the (mean, SD) space of
the terminal segment number distributions. Continuous lines connect
(mean, SD) data points predicted for a particular value of parameter E.
Dotted lines connect (mean, SD) data points predicted for a particular
value of parameter B. The inset shows the mapping in more detail for
small values of the mean and SD. A similar type of figure with other
ranges can be found in Van Pelt and Uylings (2002)

Fig. 6 Dependence of the mean tree asymmetry on the parameter S,
which determines the order-dependency in branching. This relation-
ship depends on the degree of the trees as indicated for the different
curves

parameter description related to

T duration of growth

S order dependency in branching mean tree asymmetry

B time integral of baseline branching rate function D(t) degree distribution

E competition parameter in branching degree distribution

τ time constant in exponential function D(t) degree growth curve

lin-mn initial length of daughter segments after branching segment length

lin-sd standard deviation in initial length segment length

ν-mn mean elongation rate segment length

ν-sd standard deviation in elongation rate segment length

Table 1 Growth model
parameters in NETMORPH
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Parameter Specification of Cell Types The dendritic out-
growth model has been developed for individual neuritic
trees. Axons and dendrites are, obviously, different tree
classes, but the dendritic trees themselves may also be
subdivided into different tree classes. For instance, a
pyramidal neuron consists of basal dendrites, apical main
stem, apical tuft and oblique dendrites. Each of these tree
classes requires separately optimized growth parameters.

Generation of Individual Neurons Neurons are grown
during a specified period of development. At each time step
Δt and for each growth cone, decisions are made for
elongation, branching, redirection, etc. The stochastic nature
of the simulator requires random sampling operations that use
the various specified probability density functions (PDFs).

Examples of Model-Generated Dendritic Morphologies

Examples of NETMORPH generated dendritic morpholo-
gies were obtained by optimizing the model parameters to
data sets of experimental reconstructions made available in
the Neuromorpho.org website. Reconstructions of rat cortical
layer 2/3 pyramidal neurons from Markram (see Wang et al.
2002) and from Svoboda (see Shepherd and Svoboda 2005)
were downloaded in the form of .swc files. The data were
analyzed with respect to several shape properties such as
degree, asymmetry and segment lengths. A genetic algorithm
was used to search for optimal model parameter values that
reproduce these shape characteristics in the generated model
dendrites. Examples of randomly generated neurons pro-
duced with these optimized parameter values are shown in
Fig. 8a–d, along with examples of individual reconstructed
neurons from the Neuromorpho.org site.

Figure 8e–g show examples of NETMORPH generated
developing neurons at different ages. These examples are
obtained by optimizing growth parameters to data sets of
(Fig. 8e) rat lower layer 2/3 pyramidal cells from Markram
(Wang et al. 2002); (Fig. 8f) rat layer 5 pyramidal cells
from Staiger (Schubert et al. 2006), and (Fig. 8g) layer 4
basket cells from Markram (Wang et al. 2002).

For the above given examples it is important to note that
optimization of model parameters was done using the data
as provided in the database. That is, no correction was
made for any distortion of the neuronal geometry (such as
neurite tortuosity or length scales) as caused by slicing (cut
endings) or tissue handling (e.g. tissue shrinkage).

Example of Axonal Morphologies

NETMORPH generated axonal morphologies were
obtained by optimizing the model parameters to data sets
from studies on the morphological development of in vitro

rat cortical neurons (data of Ger Ramakers and Ellen
Kampert; see Ramakers et al. (1998) for culturing meth-
ods). The morphology of the axonal branching patterns was
quantified at various days of development up to 21 days in
vitro (DIV). Briefly, primary cultures of dissociated cortical
tissue were prepared from 18–19 day fetal rat cerebral
cortex. Neurons were GFP transfected, and visualized at
various days of development in vitro. Using a scanning
stage, high-resolution confocal images were obtained from
each stage position where an axon was present in the image
field. These fields were subsequently brought into register
in order to obtain an image of the full axonal branching
pattern. Next, manual drawings were made of these axonal
arborizations, which were entered into an image analysis
procedure for segmentation of the different elements of
the axon such as branch points and terminal tips. The
segmentation step was followed by a quantification of the
morphometric properties including the number of segments,
and the length of intermediate and terminal segments. The
developmental increase in the number of terminal segments
and the total axonal length is shown in Fig. 9a and b,
respectively. Note that the error bars (standard deviations)
reflect both within and between individual culture varia-
tions. These growth patterns were also used in the optimiza-
tion of the NETMORPH growth parameters, resulting in the
values F=0.16; ν0=45 μm/day; B∞=17.38; E=0.39; S=0;
τ=14 days. According to eqn (4) we have BðtÞ ¼
B1 1� e�t=t

� �
and at t=21 days, B(21)=B∞(1−e−21/14)=

13.5. The growth curves from the NETMORPH generated
axonal branching patterns are shown in Fig. 9 as continuous
curves and individual data points (triangles). Both experi-
mental and NETMORPH generated growth curves show
nice agreement. Note that for each day of development
different cultures were used with a varying number of
neurons analyzed per culture (43, 36, 30, 17, 16, 4, 2, 3 and
2 for DIV 1, 2, 3, 5, 7, 9, 11, 14 and 21, respectively). These
different sources of variance contribute substantially to the
scatter of data points in Fig. 9b. A typical example of a
NETMORPH generated axonal branching pattern at 21 days
of development is shown in Fig. 10.

Locations of Synaptic Connections

Together with the development of neuronal morphology,
NETMORPH also simulates the development of synaptic
connectivity. In biological neuronal networks, axodendritic
synapses can form where axonal and dendritic fibers are in
sufficiently close proximity (Peters 1979; Stepanyants et al.
2004; Stepanyants and Chklovskii 2005).

Accordingly, NETMORPH searches for sites where
pieces of axons and dendrites are separated from each
other less than a given distance (see Fig. 11). This yields a
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set of candidate synaptic sites, each site being defined in terms
of a specific location on a dendrite and a specific location on
an axon. NETMORPH performs this search during the
outgrowth process or, alternatively, at the end of simulated
neuron growth. By default, one synapse is generated at each
candidate site. Figure 12d gives an illustration of the locations
of these synaptic sites (proximity criterion of 1 μm) in a
developing network after 21 days of growth. The dendritic
growth parameters used for this figure were F=0.39; ν0=
12 μm/day; B∞=4.75; E=0.5; S=0; τ=3.7 days.

Connectivity

An interesting anatomical aspect of the generated networks
is their synaptic connectivity structure, which will be a

function of axonal and dendritic morphologies. Network
connectivity may be specified in terms of which neurons
are connected; how the connectivity between neurons
depends on the distance between their somata; and the
multiplicity of the connections, i.e. the number of synaptic
connections from a presynaptic to a postsynaptic neuron.
Figure 12a–c show a developing network at different times
of simulated development; the resulting synaptic locations
at day 21 are depicted in Fig. 12d. Connection multiplic-
ities are shown in Fig. 12e–f at different values of
thresholding to focus on connections with at least a
minimal number of synapses. Figure 13 shows graphs that
depict the frequency of synapses at different radial
distances from the somata (Fig. 13a,b) and the frequency
of connections between neurons at different radial distances

Fig. 8 (a–d) Comparison of reconstructed and NETMORPH gener-
ated dendritic morphologies. (a) A typical example from the Markram
set of reconstructed rat cortical lower layer 2/3 pyramidal neurons,
obtained from the Neuromorpho.org database. (b) A typical random
NETMORPH generated neuron using a model parameter set opti-
mized for the Markram data set in (a). (c) A typical example from the
Svoboda set of reconstructed rat cortical upper layer 2/3 pyramidal
neurons, obtained from the Neuromorpho.org database. (d) A typical

NETMORPH generated neuron using a model parameter set opti-
mized for the Svoboda data set in (c). (e–g) Growth of three model
neurons at several days of development. The NETMORPH generated
dendritic structures were obtained with model parameters optimized
for three different cell groups, using reconstructed neurons from the
Neuromorpho.org database of (e) rat lower layer 2/3 pyramidal cells
from Markram, (f) rat layer 5 pyramidal cells from Staiger, and (g)
layer 4 basket cells from Markram
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(Fig. 13c) in the same network after 21 days of simulated
development. These preliminary model-based findings
compare qualitatively well with empirical distributions (e.g.,
Le Bé et al. 2007; Hellwig 2000), showing a prevalence of
connections at a specific range of distances (e.g., Sporns et
al. 2004; Kaiser and Hilgetag 2007). These examples
illustrate that NETMORPH can be used to study how
connectivity distributions arise and how intrinsic geometric
factors, such as the average distance between somata and
elongation and branching rates, influence the shape of such
distributions.

Candidate synaptic sites are searched for on the basis of
a proximity criterion. The number and location of synapses
are therefore highly dependent on the morphological details
of the axonal and dendritic arborizations, such as their
tortuosity. The fine structure of dendrites and axons thus
affect the resulting connectivity in the network. As a note of
caution, it is important to realize that the staining process of
the tissue prior to morphological reconstruction might
affect this fine structure

A qualitative impression of a 3D network of cell bodies
and axonal and dendritic fibers as well as synaptic locations
is shown in Fig. 14. The visualization process involved
solid rendering of the structures and raytracing (POV-Ray).
In this example, all the axonal and dendritic segments have
equal diameter.

NETMORPH Implementation

NETMORPH is implemented in object oriented C++.
Simulations are initialized and run through a textual
interface (script or command line). Simulation output
comes in the form of textual reports, figures and animated

Fig. 11 Location of a candidate synapse when orthogonal distance
between pieces of axon and dendrite is smaller than a criterion value

Fig. 10 Example of an axonal branching pattern at 21 days of
development generated by NETMORPH. Growth parameters were
optimized to experimental developmental data set of axon growth in
tissue culture (unpublished data of Ger Ramakers)

Fig. 9 Axonal development in mean (sd) number of terminal
segments (a) and in total length of neurons cultured in vitro (bullets
and error bars) (b). Continuous curves and triangles denote the growth
of axons of NETMORPH generated neurons during a growth period
of 21 days. Growth parameters were optimized to the morphology of

experimental reconstructed axons of cultured neurons at the various
developmental time points at which cultures were terminated
(unpublished data of Ger Ramakers, and reconstructions by Ellen
Kampert)
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sequences of development. The textual output of a
simulation also lists simulation settings and an inventory
of synapse formation. Several freely available programs are
used for the post-processing that is needed to produce
figures (Octave, fig2dev) and animated sequences (convert).
The interface with NETMORPH is described in a manual
(Koene et al. 2009). This manual informs the user about the
installation and parameters of NETMORPH, and includes
example scripts for the running of typical simulations. One
of the options in NETMORPH is to export via text files the
structure of the network, including the coordinates of all
structural elements (such as somata, branch points, terminal
points, continuation points, synapses). Another option is to

export only abstracted connectivity, describing which
neurons are connected and the multiplicity of their
connections, but without the details of synapse location.
We aim to provide standard output formats as used by
programs such as NEURON (Hines and Moore 1993; Hines
and Carnevale 1997).

Discussion

We have created a simulation framework for the generation
of large scale neuronal networks with realistic neuronal
morphologies. NETMORPH is a simulation tool that

Fig. 12 a–c A 400µm x
400µm x 400µm volume
excerpt of network development
depicted in the x-y plane after 4,
8 and 16 days of development.
Filled blue circles represent
somata. Dendrite fibers are blue,
axon fibers are green. (d):
Synaptic sites (black dots) after
21 days of development in the
same network excerpt, searched
with a proximity criterion of
1 μm. Cell bodies are shown as
filled blue circles. The rectangle
indicates the volume excerpt of
the network shown in the panels
a–c. Note that some neurons do
not appear at the depth ranges
that are included in the volume
excerpt. (e–f) Abstract connec-
tion diagrams of the
network excerpt in (d) after
21 days of simulated develop-
ment. The panels show all
connections with multiplicity
greater than (e) 25 % and (f) 50
% of the maximum multiplicity
in the network. Connections
retain their directionality, with
the source neuron indicated by a
small diagonal root line segment
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explicitly incorporates the developmental aspect of the
generation of neuronal morphology. Networks are formed
by the simultaneous outgrowth of many neurons in 3D
space and connectivity emerges when axonal and dendritic
branches come into sufficiently close proximity. In its
present form, neurons grow out independently of each
other. The morphological development of neurons and the
formation of synaptic connectivity are modeled using sets
of characteristic stochastic model functions and parameters.
Simulations of network development enable analysis of
emergent network connectivity. NETMORPH implements a
neuronal outgrowth model in 3D based on earlier work of
Van Pelt et al., with extensions for modeling branching
angles and directions of outgrowth. These 3D morpholog-
ical properties were validated using 3D Sholl analysis. This
analysis captures, however, only one aspect of the 3D shape
of neuronal arborizations, not fully covering shape proper-

ties such as neurite orientation (e.g. Uylings and Van Pelt
2002) and tortuosity. The generated neurons have been
quantitatively compared with the morphology of experi-
mentally reconstructed neurons obtained from the Neuro-
Morpho.org database with respect to a number of
morphometric properties, further underscoring the morpho-
logical realism of the generated structures.

The model is based on parametric stochastic functions
for neurite outgrowth and branching. The functions have
been designed so as to capture some basic biological
principles of neuronal development, namely competition
between growth cones for resources, dependence of
branching probability on the growth cone’s distance from
the soma, and the inclusion of an exponentially decreas-
ing baseline branching rate function. The parameter
values optimized for particular cell types thus reflect and
quantify these biological principles in a phenomenologi-
cal manner. For instance, the requirement of a baseline
branching rate function predicts that during the period of
outgrowth the intracellular processes involved in branch-
ing exert an exponentially decreasing drive for branching
(e.g., as the joint effect of the changes in expression of the
many genes involved in dendritic branching, e.g., Jan and
Jan 2003).

The 3D implementation of the neuronal growth model
makes it possible to search for locations where dendritic
and axonal segments are in close proximity. Taking these
locations as candidate sites for synaptic connections
provides an estimate of synaptic connectivity on pure
geometrical grounds, since model neurons in NETMORPH
grow out without interactions. The question to what extent
such connectivity depends on the tortuosity of the neurites
is a topic of further research. Network connectivity in
NETMORPH is an emergent property arising from the
geometry of independently outgrowing axons and den-
drites. An interesting application therefore concerns inves-
tigating the complex relationship between neuronal

Fig. 14 A 3D view on a network generated by NETMORPH and
visualized through solid rendering and raytracing (POVRAY). The figure
gives an impression of how cell bodies (white), axons (green), dendrites
(red) and synaptic connections (blue disks) are embedded in 3D space

Fig. 13 Frequency by radial distance from pyramidal cell somata in bins of 20µm for (a) presynaptic location on axons, (b) postsynaptic location
on dendrites, and (c) connections from presynaptic to postsynaptic neurons, irrespective of the number of synapses
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morphology and local and global patterns of synaptic
connectivity (e.g. small-world connectivity).

NETMORPH as provided on our website (see
Information Sharing Statement) is a working version
with full functionality. We are continuously improving
NETMORPH and its documentation and are currently
working on a user-friendly graphical user interface. In
addition, we intend to build an integrated software
environment around NETMORPH (NetmorphLab) to
offer the user an integrated set of neuroinformatics
tools and facilities for databasing / datasharing, data
analysis, data visualization, as well as computational
modeling for studies of the morphology and function of
neurons and neuronal networks.

The outgrowth model used in NETMORPH has so far
mainly been used to generate dendritic morphologies.
Further validation of model-generated axonal morphologies
therefore remains necessary. NETMORPH is designed with
a modular structure, such that it can accommodate further
extensions and modifications, for example with respect to
the model assumptions and specifications. The modularity
concerns not only how morphological development is
separated into different actions of the growth cone, but
also the selection of the model functions for these actions,
implemented in NETMORPH as model chains. In this
respect, future extensions of the outgrowth model may also
account for interactions of migrating growth cones with
their local environments. For example, we are testing
models in which outgrowing neurites are attracted to
specific targets in their environment, (see Koene et al.
2009).

The neuronal networks generated by NETMORPH may
provide realistic connectivity patterns that could be used in
tools such as NEURON to simulate activity dynamics. In
this respect, an interesting research question concerns the
impact of activity-dependent outgrowth rules on the
development of the neuronal network. Future extensions
of NETMORPH will include tools to study the role of
activity in neuronal morphogenesis and network devel-
opment using detailed neuronal morphologies rather
than abstract neuritic fields as in previous studies (Van
Ooyen et al. 1995, 1996; Fields and Itoh 1996; Konur and
Ghosh 2005). To do this, NETMORPH then needs to
manage simultaneously both the slow processes of
morphogenesis (days) and the fast processes of network
activity (milliseconds).

Information Sharing Statement

The NETMORPH software and the NETMORPH manual
are made available at http://www.neurodynamics.nl. This
site also includes the NETMORPH model scripts and
instructions for producing the results presented in this

paper. We are continuously improving NETMORPH and its
documentation.
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